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Multiplex Relative Risk and Estimation of the Number of Loci Underlying

an Inherited Disease

Paul Schliekelman™ and Montgomery Slatkin

Department of Integrative Biology, University of California, Berkeley

Knowledge of the number of causative loci is necessary to estimate the power of mapping studies of complex
diseases. In the present article, we reexamine a theory developed by Risch and its implications for estimating the
number L of causative loci affecting a complex inherited disease. We first show that methods based on Risch’s
analysis can produce estimates of L that are inconsistent with the observed population prevalence of the disease.
We demonstrate this point by showing that the maximum-likelihood estimate for L produced by the method of
Farrall and Holder for cleft lip/cleft palate data is not consistent with the prevalence under the multiplicative model.
We show how to incorporate disease prevalence and develop a maximum-likelihood method for estimating L that
uses the entire distribution of numbers of affected individuals in families containing an affected individual. This
method avoids the potential inconsistencies of the Risch method and has greater precision. We apply our method

to data on cleft lip/cleft palate and schizophrenia.

Introduction

It has become apparent that positional cloning for com-
plex diseases is more difficult than has previously been
envisioned. Recently, Altmiiller et al. (2001) conducted a
comprehensive review of 101 whole-genome-scan studies
of complex disease and found that only one-third of these
produced significant linkages. Furthermore, few of the
linkages that were significant were reproduced in other
studies. The reasons for this lack of success are not clear.
It is known that the power to detect linkage decreases as
the number of loci affecting a disease increases, because
the effect of each locus is lower on average. Therefore,
having reliable estimates of the numbers of loci that
affect complex diseases will help with the design of map-
ping studies.

At present, only one class of methods, based on the
theory introduced by Risch (1990a), is available to es-
timate the number of loci, L, when genotype data for
affected individuals are unavailable. In the present ar-
ticle, we will reexamine Risch’s theory and related the-
ories, with the goal of developing a method for provid-
ing more-accurate estimates of the number of causative
loci than are currently available. In doing so, we will
show that Risch’s theory may be inconsistent with the
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data to which it is applied, meaning that, for some mod-
els, no combination of parameter values can account
for observed prevalences and relative risks. We show a
method that avoids this inconsistency and has greater
precision than previous methods based on Risch’s theory.

Risch (1990a) modeled a disease affected by loci that
act either multiplicatively or additively, and he derived
relationships between the relative risk of a disease in
relatives with different degrees of relatedness (“A\g” in
his notation) as a function of the number of causative
loci. He then used his theory to explore the dependence
of relative risk on the number of causative loci, L. In
two companion articles (Risch 19906, 1990c¢), he ex-
amined the power to detect linkage in affected pairs of
relatives under the additive and multiplicative models.
Risch showed that the power to detect linkage to a locus
depends on the relative risk attributable to that locus
and that the power deteriorates quickly as L increases.
Farrall and Holder (1992) extended Risch’s (19904) the-
ory and developed a maximum-likelihood method for
the estimation of L under the multiplicative model. Far-
rall and Holder (1992) applied their method to data
from a study of cleft lip/cleft palate (CLCP) and found
that the 1-LOD support interval for the number of loci
was very broad: 2—00,

In the present article, we will first reexamine the re-
lationship between the number of loci affecting a com-
plex disease, the population frequency of the disease,
and the relative risks, and we will show that estimates
of the number of loci in a multiplicative model ob-
tained from relative risks may be inconsistent with the
observed prevalence of a disease. We will then intro-
duce a new method for estimating the number of loci
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that avoids these inconsistencies and that, in two ex-
amples, gives more-precise estimates of the number of
causative loci. We call this method—a form of complex
segregation analysis—a “multiplex method,” because
it is based on the entire distribution of numbers of af-
fected individuals in families containing an affected in-
dividual. Our analysis is similar to that of Smith (1971),
who derived recurrence risk formulas for groups of sibs
and compared fits of single-locus and multifactorial
threshold models. We extend Smith’s recurrence risk
formulas to allow for multiplicative interactions among
loci and to permit analysis of other groups of relatives.
We then develop a maximum-likelihood estimator for
the number of disease loci. We illustrate the use of our
method by applying it to CLCP data previously ana-
lyzed by Farrall and Holder (1992) and schizophrenia
data published by Hovatta et al. (1997).

The Risch Method

First, we will review Risch’s (1990a) theory. Take X and
Xy as indicator variables denoting the affected status of
the proband and a type R relative. Then, the probability
P(Xy = 1|X = 1) is given by

P(XR=1|X=1)=K+%, (1)

where K is the population prevalence of the disease and
Cy is the genetic covariance between type R relatives.
Rearranging equation (1), we get

C
N1= )

where N\, the “relative risk,” is given by P(X; =
1|X = 1)/K. The relative risks for two different types
of relatives R and T are given by

= 3)

The above relationships apply for a single locus. Under
a multiplicative penetrance model with no gametic dis-
equilibrium, the overall relative risk is given by the prod-
uct of the individual locus risks:

Ae = Ny Aga oo Agp - 4)

Assuming that equation (3) holds for each locus and
substituting into equation (4), we get

L
CR)( CT)
= : -1+
=11 (CTI Mot ) ©)
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where L is the number of loci and C,, C,, and C, are the
locus-specific covariances for first-, second-, and third-
degree relatives, respectively. Throughout the present ar-
ticle, the phrase “relative risk” refers to the total relative
risk unless specified as “single-locus relative risk.”

Under the assumption that dominance variance is
negligible, the relationship C, = 2C, = 4C, holds, and
equation (5) has a particularly simple form:

L

A\, = (%)L]:[l N+ 1) . (6)

Risch (1990a) used equations (4) and (6) to compare
different models of inheritance for schizophrenia. Risch
also considered additive and genetic heterogeneity mod-
els. He showed that the genetic heterogeneity model is
well approximated by the additive model and that the
additive model gives the same pattern of relative risk as
a single-locus model does. Risch (1990a) noted that, in
many cases, relative risk decreases more rapidly with re-
latedness than is predicted by the additive model but that
the multiplicative model can be parameterized to provide
an approximate fit to observations. We will employ the
multiplicative model here because of its mathematical
simplicity and because, in the absence of other knowl-
edge, it is reasonable. It remains to be established how
realistic the multiplicative model is or what its relation-
ship is to more-general models of epistatic interactions.

Risch (1990a) employed an informal approach for the
comparison of inheritance models. Farrall and Holder
(1992) introduced a method using equation (6) as the
basis for a maximum-likelihood method for the esti-
mation of L under the assumption of equal contribution
to disease risk by all loci. We will refer to these methods
jointly as the “Risch-Farrall-Holder” (RFH) method, and
we will refer to the maximum-likelihood method as the
“Farrall-Holder” (FH) method. In both cases, we are
referring to the method for the inference of parameters
of a model of inheritance, as opposed to the relationships
given by equations (1)—(6).

Inconsistency of RFH Method with Observed
Population Prevalences

We will now show that the best-fit (either formal or
informal) models given by the RFH method are often
inconsistent with the observed population prevalence
of the disease. Several authors (Suarez et al. 1976; Crad-
dock et al. 1995; Rybicki and Elston 2000) have ex-
plored the mathematical limits on the range of possible
relative-risk values under different genetic models. Crad-
dock et al. (1995) have described a graphical method
for the determination of plausible modes of inheritance
for complex traits and have applied it to bipolar dis-
order; they showed that the lower limit on possible
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sib-relative-risk values A for bipolar disorder is not con-
sistent with a single-locus model or any genetic heter-
ogeneity model but that multiplicative models with three
or more loci are plausible. Recently, Rybicki and Elston
(2000) have studied the relationship between sib relative
risk and genotype relative risk for one- and two-locus
models; they looked at upper bounds on sib relative risk
and showed that it is restricted to values <10 for many
genetic models unless there is significant dominance. The
results of these studies show that there are strong re-
strictions on the range of possible \g values.

Risch’s equations give information only about the val-
ues of N\, and the values of \; relative to \,. Thus,
N\, is treated as an independent parameter. However,
we note that \, is itself dependent on L. Thus, the use
of equation (5) implicitly assumes that, for every L,
there is some combination of penetrance values and
disease-allele frequencies that gives A\,. We now show
that this is not always true.

We will assume that all disease-predisposing alleles at
a locus have equal affect. Thus, we must track only two
allele types: disease-causing and non—disease-causing al-
leles (hereafter referred to as “disease alleles” and “non-
disease alleles,” respectively). Although this is less general
than in Risch’s (1990a) study, this case is of sufficient
importance to illustrate the point. Take 7 as the prob-
ability that the lowest-penetrance genotype (individuals
homozygous for the nondisease allele on every locus)
is affected and 6 as the probability that the highest-
penetrance genotype (individuals homozygous for the
disease alleles on every locus) is affected. If we assume
equal contribution to disease penetrance by all loci,
then the single-locus contributions to 7 are m, = 7',
and the single-locus contributions to 6 are §, = §"*. If
we introduce a dominance coefficient b, then the three
single-locus penetrance contributions are given by m;,
™ + h(8, — m ), and §,, for nondisease-allele homozy-
gotes, heterozygotes, and disease-allele homozygotes,
respectively.

The genetic model is completely specified by a choice
of L, b, m, 8, and disease-allele frequency p. Thus, as L
is varied in the application of the RFH method, it is (im-
plicitly) assumed that there exist values of w, 8, b, and p
that will yield \,. If dominance variance is negligible, then
parent-offspring and sib genetic covariances are equal. In
this case, the parent-offspring and sib relative risks are
also equal. Because this is observed for most complex
diseases, it is usually assumed that there is no dominance
variance, and, thus, b is restricted to regions where this
is approximately true. We will use this assumption and
constrain parameter values in the following analysis (but
not in the application of our method in the “Multiplex
Relative Risk” section, below).

In appendix A, we derive equations for the probability
that a disease affects an individual given that some col-
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lection of relatives is affected. We can use this procedure
to find the joint probability that parent and offspring
are both affected:

1 1
MoK = [0 = p1t + 20, + ) (37, + 390 ) p 1 =

1 1 1
+4¢L(Z7FL +E¢L +Z($L)p2(l _p)z

+ (7TL + 6L)'¢LP2(1 - p)z
1 1 L
2, + )50 +30) 00— pi+ein]
(7)

where ¢, = m, + b (6, — m.), p is the disease-allele fre-
quency, and A, is the parent-offspring relative risk. This
equation gives parent-offspring risk directly, in terms of
the genetic model, and is therefore fully consistent with
all parameters. In addition to satisfying equation (7), the
set of parameters must also produce the correct disease
prevalence K, given by

K={1- P)z m, + 2p(1 = p)lm, + h(al_ - 7rL)1+p25L}L .
(8)

Furthermore, these parameters must satisfy 0 <p < 1,
0<m<K,and K <6 < 1. Our goal is to find the max-
imum value of N, given equations (7) and (8) and these
constraints. We solve equation (8) for p and substitute
into equation (7). This gives an expression for A, that
is constrained to allow the observed disease prevalence
K. The prevalence is assumed to be known exactly. Given
the large sample sizes typical for prevalence, this should
usually be reasonable. The dependence that this expres-
sion has on the parameters is complex and is further
complicated by the somewhat vague requirement that
dominance variance be negligible. In appendix B, we
derive expressions for the maximum X, value for
h=0,h=1/2,and b = 1, and we show that, when
the dominance coefficient is unrestricted, N ,, is always
maximized at either » = 0 or b = 1. For large values
of L, the dominance variance is negligible regardless of
b, and the maximum A, value is given by 1/VK. In this
case, \,, has a maximum value of 10 for L = 10 and
K = 0.01 and a maximum value of 36.6 for L = 10
and K = 0.001.

For small-to-intermediate values of L, the dominance
variance is not negligible for all values of 4. In this case,
we have resorted to numerical explorations of the pa-
rameter space, to find maximum possible values of \ .
Table 1 shows the maximum values of N, and A (sib
relative risk) for K = 0.01 and K = 0.0001 and various
values of L for when the dominance coefficient is re-
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Table 1

Maximum Relative Risk

K L Maximum N, Maximum A h°
.001 S 54.8 60.0 1
.001 10 11.6 12.5 3
.001 15 15.4 17 2
.001 20 18.7 20.7 .1
.001 50 31.6 33.6 0
.01 N 7.8 8.4 .8
.01 10 7.8 8.6 1
.01 15 10.0 10.9 0
.01 20 10.0 10.7 0
.01 50 10.0 10.3 0

NOTE.—The values of 7; and §, were 0 and 1, respectively, for all
cases except §, = .7 for K = .001 and L = 20.

* Greatest allowable values of \,, and A; under the restriction of

A=< 1.11 x A, (i.e., small dominance variance) as a function of
number of disease loci L and disease prevalence K.
" Value of b for the maximum values of A, and A,.

stricted such that Ay < 1.11 x \_,. Under the require-
ment \g < 1.11 x \_,, the maximum possible value of
N, is 7.8 for L = 5-10 and K = 0.01 and is 11.6 for
L =10 and K = 0.001. It is debatable whether we
should consider that A¢>1.11 x X\, indicates nonneg-
ligible dominance variance, but, regardless of the exact
condition that we use, it is clear that there are strong
restrictions on possible values of \,. Thus, for example,
schizophrenia and bipolar disorder, which both have a
prevalence of 0.01 and have first-degree relative risks of
~10 (Risch 1990a) and ~135, respectively (Altmiiller et
al. 2001), are strongly restricted in possible models. In
particular, it is difficult to produce large relative-risk val-
ues with intermediate numbers (~5-12) of loci. Larger
relative-risk values can be produced for models with
many loci (>15) but only under restrictive parameter
assumptions (typically, b = 0, m, = 0, and §, = 1).
When b is restricted to 0.5 (no dominance), we can
get a simple formula (eq. [B7]) for the allowable values
of \,,. Figure 1 shows a plot of allowable values of
\,, as a function of L for K = 0.01 and K = 0.001.
Points below the curves are allowable combinations of
L and \,. In this case, the limits on allowable values of
\,, are very stringent. For example, schizophrenia could
not involve more than two loci in this case. As L increases,
the disease-allele frequency also increases, and it takes
substantial dominance to get large relative-risk values.
The reason that the range of values of relative risk
is restricted is that the prevalence K determines the
disease-allele frequency for a given set of parameters.
In the absence of this constraint, the relative risk simply
increases with L—the more loci that are necessary for
the disease, then the more important potential identity-
by-descent (IBD) sharing with an affected relative is for
the occurrence of the disease. However, if the preva-
lence is accounted for, L cannot be increased without
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an increase in p. Figure 2a shows plots of p versus L,
obtained by solving equation (8) for p. We see that p
increases rapidly with L. If L increases, then the num-
ber of “disease events” that must occur for an individ-
ual to be affected also increases. Thus, the probability
of a disease event must increase to keep K constant.
The relative risk, in turn, has a strong dependence on
p. Figure 2b shows plots of sib relative risk versus L
for values of m, ranging from 0 to 0.2 (with h = 0.5
and 6, = 1). As expected, the highest relative risks oc-
cur for m, = 0. At m, = 0, the relative risk decreases
from 10 to 4, between L = 1 and L = 10, as p in-
creases from near O to near 0.6. The relationship is
more complicated for 7, > 0 (meaning that some single-
locus disease events occur without disease genotypes).
Then, the disease-allele frequency increases less rapidly
with L, because it is possible for some of the L required
disease events to occur without any disease alleles. In-
creasing L has two opposing effects on the relative risk:
the number of required disease events increases (tending
to increase relative risk), but the probability of those
disease events also increases (tending to decrease relative
risk). The value of m; determines which effect dominates;
thus, it is possible for relative risk to either increase or
decrease with L (see fig. 2b). Note, from figure 2b, that
the maximum possible sib relative risk always decreases
with L.

The shape of the curves in figure 2 is strongly dependent

70

Figure 1 Allowed values of sib relative risk A. The curves
correspond to the overall disease prevalence K, as shown. Only com-
binations of Ag and L under the curve are possible. The curve is given
by equation (B7) and is valid only for the case of no dominance
(h = 172).
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Figure 2 Effect of varying L. a, Effect of number of loci L on
disease-allele frequency p. The curves correspond to values of the dom-
inance coefficient b, as shown, and to K = 0.01, §, = 1, and 7, =
0.2. b, Effect of L on sib relative risk. The curves were generated with
m, values of 0,0.02, 0.05, 0.1, 0.15, and 0.2, ordered from top to bottom,
as shown. For all plots, §, = 1, and b = 0.5.

on the assumption of multiplicative interactions between
loci. Under an additive model, for example, the disease-
allele frequency decreases linearly with increasing number
of disease loci. The sib relative risk increases with L for
small values of m; and decreases with L for larger values
of m,—a pattern opposite to that for the multiplicative
model.
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We should stress that table 1 and figure 1 are valid only
for loci of equal effect under a multiplicative model. Ob-
viously, there are more ways to satisfy the parameter con-
straints when the loci can vary independently. However,
the general patterns still hold. For example, a popular
model for genetic epidemiological studies assumes one
or a few major genes and many minor genes. A simple
extension of the methods used in the present article for
a disease with K = 0.01 shows that such a model is
possible only for multiplicatively interacting loci if (i)
the major gene (or genes) has b near 0.5, (ii) there are
=20 of the minor genes, and (iii) the minor genes have
parameters very near b = 0, m, = 0, and §, = 1.

Environmental Correlations and Ascertainment Bias

Relative-risk values are a measure not only of genetic
similarity but also of environmental similarity (Guo 2000,
2002). Thus, the observed values will often be inflated
beyond the genetic-effect—only values assumed in Risch’s
(and our) method. The presence of environmental cor-
relation will cause the estimate for L to be biased down-
ward. Even with no environmental correlations, relative-
risk estimates are subject to ascertainment bias (Rice et
al. 1982; Guo 1998; Cordell and Olson 2000; Olson
and Cordell 2000). Such bias can occur for a variety of
reasons, including a greater probability of the detection
of families with more affected members, variations in
the probability that affected individuals have children,
reluctance of parents of an affected individual to have
further children, and an increased probability that rel-
atives of an affected individual are falsely diagnosed as
affected. Although there are definite problems with data
on recurrence risk even for first-degree relatives, the need
to use data on second- and third-degree relatives in the
RFH method magnifies the problem. An important ad-
vantage of our method is that it does not require data
from multiple types of relatives. Thus, relatives with
known or suspected bias in affected probabilities can be
eliminated from the analysis. We will show, in our ex-
amples, that estimates from our method are fairly robust
to variations in which relative types are included in the
analysis.

Multiplex Relative Risk

We estimate L by using a maximum-likelihood approach.
The likelihood function F is a product of multinomial
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distributions for the number of affected relatives of
probands:

F = Rlsy ¥ (1 =,
s a0 (1 = 3y = s NN
o111 — oy, ~Nor
X [0, 2 (0N (1 = 0y, = 0, N Moz N2,
(72N (1 — g2y Nt ™oy

X ({72522 (12 ) N2 (1 = 1y = mgy) N2 N2 N2 (9)

In equation (9), s is the probability that i of j sibs of
the proband are affected; N, is the number of probands
with j sibs; N is the number of probands with 7 of j
sibs affected, and so forth; and o, and n; refer to off-
spring and nieces/nephews, respectively. This can be ex-
tended to any type of relative. The probabilities s, o
etc., are functions of L, b, 6,, and . The derivation for
the probabilities for sibs is given in appendix A. The
probabilities for other types of relatives are calculated
in a similar fashion. The quantities N, N;, and so forth,
are the input data. R is an arbitrary constant.

The likelihood is maximized over the range of values
of L = [1=100], b = [0-1], = = [0-K], and 6 = [K—1],
for the data N, N;, and so forth, and the prevalence K.
The frequency p of the disease allele is calculated from
the prevalence and the assumed genetic model for the
disease. Note that the dominance coefficient is not re-
stricted for these model fits. The support interval is taken
as all sets of L, b, m,, and §, that are not less than one-
tenth as likely as the maximum-likelihood value.

i

Precision of Methods

Figure 3 shows a plot of equation (5) for Ag = 10 (the
first-degree relative risk for schizophrenia), C;/Cs = 1/2,
and varying L. With this choice of parameters, \; cor-
responds to the relative risk for second-degree relatives
(e.g., aunt and nephew). Most of the change in Az occurs
between L = 1 and L = 3, and very little change occurs
beyond L = 5. Thus, this relationship gives us a weak
basis for making inferences about L outside this range.
However, this relationship does give us a basis for dis-
tinguishing between single-locus and multilocus models
and can reliably set the lower bound on L as single locus
or multilocus.

The RFH method bases inference on equation (5). Only
the ratios of relative-risk values are used. Figure 26 shows
that the risk for first-degree relatives itself provides sub-
stantial information about L. However, for smaller L (e.g.,
L < 10), there is a wide range of possible values of the
relative risk as m, is varied. When b (especially) and 6,
are also varied, the range is further increased. Thus, if all
of these parameters are free when the model is fitted to
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Aunt-Nephew vs. Parent-Offspring Risk

5.0 55
I

4.5

AAN

3.5
L

0 20 40 60 80 100

Figure 3 Aunt-nephew relative risk as a function of L for a
parent-offspring relative risk of 10. This curve was generated by
equation (5) with Ay = 10 and C,/Cs = 1/2.

data, then it will be difficult to use A, to distinguish
among values of L in this range. As discussed earlier in
the present article (see the “Inconsistency of RFH Method
with Observed Population Prevalences” subsection), there
are strong restrictions on the maximum possible value of
\,o- Thus, constraining the values of N, when fitting data
can provide an upper bound on the interval of plausible
values of L.

In view of these arguments, we would expect that, if
fits to a model are based on simple relative-risk values by
using equations (5) and (7), only loose upper and lower
bounds on L would be obtained. The distribution of num-
bers of affected sibs provides additional information. For
example, figure 4 shows the probability that two of three
and three of three sibs of a proband are affected when L
is in the range of 3-10. Their absolute and relative values
vary substantially over this range. Estimates of these mul-
tiplex probabilities for families of various sizes provide
additional information about the range of L values that
is most important. However, we also see, from these fig-
ures, that the probabilities of having two or more affected
sibs are quite small. The probabilities in figure 4 are con-
ditioned on the proband’s being affected. We multiply by
the prevalence (0.01 in the case of fig. 4) to get the mar-
ginal probabilities. Thus, sample sizes will need to be large
to have enough such families to appreciably affect the
likelihood functions.

Applications to Data

CLCP

We apply our method to one of the data sets used
by Farrall and Holder (1992). Farrall and Holder
(1992) used equation (5) as a basis for a maximum-
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Figure 4

Effect of number of disease loci on multiplex-disease probabilities. a, Probability that two of three sibs of an affected individual

are also affected. b, Probability that three of three sibs of an affected individual are also affected. Both curves were generated with K = 0.01,

h=0.5,6 =1,and 7, = 0.

likelihood approach to estimating L for CLCP. We will
reanalyze the data of Carter et al. (1982), which pro-
vide sufficient information to estimate the multiplex
probabilities. Farrall and Holder (1992) combined
data from the Carter et al. study with data from other
studies from which multiplex probabilities cannot be

estimated. We recompiled the data given by Carter et
al. (1982) to get the probabilities that 0, 1, 2, and so
forth, relatives of a proband with CLCP were affected
(data for first-degree relatives are given in tables 2
and 3; similar tables for second-degree relatives are
available at Paul Schliekelman’s Web site).
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Table 2
CLCP Data and Best-Fit Model from Multiplex Method—Offspring

Am. ]J. Hum. Genet. 71:1369-1385, 2002

NoO. OF FAMILIES® WITH

No Individuals Affected

OVERALL No.

One Individual Affected Two Individuals Affected

No. oF CHILDREN® OF FAMILIES® Observed Expected Observed Expected Observed Expected
1 86 83 83.7 3 2.3

2 183 170 173.8 13 8.7 0 S

3 97 90 90.0 7 6.2 0 7

4 34 32 30.9 2 2.6 0 4

5 13 12 11.6 0 1.1 1 2

6 8 S 7.0 3 .8 0 2

8 2 1 1.70 1 2 0 .07

9 1 0 .84 1 1 0 .04

* Number of offspring of the proband.
> Number of families with the given number of offspring.

¢ Observed and expected numbers of such families with zero, one, or two affected children of affected individuals; no family had more than
two individuals affected. Observed values were compiled from Carter et al. (1982); expected values were calculated from the best-fit model of

L=3,h=.954 =1,and 7, =.05.

Using the FH method on the Carter et al. data (1982),
we find a maximum-likelihood estimate of L. = 22 with
a support interval of 40, Table 4 shows the observed
relative-risk values along with those for the best-fit model.
The observed parent-offspring and full-sib relative
risk values were 32.1 and 28.5, respectively. The max-
imum possible (unrestricted dominance) value for
Ao 1s 1/70.00098 = 31.9, occurring if the disease allele
is completely recessive and the disease is completely ge-
netically determined (i.e., if -, = 0 and 8, = 1). The
corresponding A of 36.6 is not compatible with the ob-
served value. If we restrict the dominance and ensure

that Ny < 1.11 x A\, then the maximum value of X\,

Table 3
CLCP Data and Best-Fit Model from Multiplex Method—Sibs

(obtained numerically) is 22.1 (occurring at b = 0.1,
m, = 0, and 8, = 1). Thus, the best-fit value from the
FH method does not appear to be compatible with the
observed disease prevalence. Note that the allowance of
even small deviations from complete penetrance causes
the maximum value of X, to decrease substantially. For
example, the maximum value of A, is 23.6 if we take
8, = 0.97 in the unrestricted dominance case. The max-
imum value of N, drops to 16.9 for §, = 0.97 in the
restricted dominance case. Similar reductions in maxi-
mum value of \, occur if we allow =, to differ from 0.
If we specify no dominance (in view of the observation
that Ag <\, in the data), then the highly restrictive limits

NoO. OF FAMILIES® WITH

No Individuals Affected One Individual Affected Two Individuals Affected  Three Individuals Affected

OVERALL No.

No. OF SiBs*  OF FAMILIES"  Observed  Expected ~ Observed Expected Observed Expected Observed Expected
1 122 118 118.7 4 3.3

2 80 77 75.9 3 3.8 0 2
3 62 57 57.5 4 4.0 0 S 1 .03
4 41 39 37.2 2 3.2 0 5 0 .06
N 17 16 15.1 1 1.5 0 3 0 .05
6 18 17 15.7 0 1.7 1 4 0 .09
7 8 7 6.9 0 .8 1 2 0 .06
8 N 4 4.2 0 5 1 2 0 .05
9 7 6 5.8 1 .8 0 3 0 .09
10 3 3 2.5 0 3 0 1 0 .05
11 2 2 1.6 0 2 0 .1 0 .04
13 1 1 .79 0 1 0 .05 0 .02

* Number of sibs of the proband.
® Number of families with the given number of sibs.

¢ Observed and expected numbers of such families with zero, one, two, or three affected sibs of affected individuals; no family had more
than three individuals affected. Observed values were compiled from Carter et al. (1982); expected values were calculated from the best-fit

model of L =3,h =.9,6, =1, and w, = .05.
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Table 4
Fits of CLCP Data

K N N A
English data® .98/1,000 30.3 (2,053) 5.7 (5,139) 2.8 (4,744)
MLE model® (L = 22) .98/1,000 29.6 5.8 2.5

NoTE.—Results from the FH method (Farrall and Holder 1992).

* Relative-risk data from an English study of CLCP (Bear 1976; Carter et al. 1982). Following
the procedure of Farrall and Holder (1992), we assumed that there was no dominance variance
and combined all relatives of the same degree together. Numbers in parentheses are sample sizes.

" Relative-risk values calculated for the best-fit model of 22 loci with equal contribution to
disease risk. MLE = maximum-likelihood estimate.

on \,, shown in figure 1 apply and none of the best-fit
models given by Farrall and Holder (1992) are com-
patible with the observed prevalence.

Figure Sa shows the likelihood profile for L obtained
using multiplex relative risk. In all likelihood plots, the
likelihood value shown is the maximum across all pa-
rameters not shown. We see a strong peak in the like-
lihood in the range of L = 3-6, with the likelihood
dropping off quickly both as L decreases to 1 and as L
increases beyond 10. The likelihood then begins increas-
ing again beyond 14 and continues increasing as L goes
to 100 and beyond. Figure 56 shows a contour plot of
likelihood versus L and b and helps to clarify these
peaks. The contours show combinations of L and » with
likelihoods 1/2, 1/10, and 1/100 of the maximum-like-
lihood values. We see that there are two distinct peaks
in the likelihood, one at L = 3 with /b being higher (but
a range of 0.2-1 falling in the 1-LOD support interval)
and one at L = 100 with b being restricted to values
around 0. A model with =100 disease loci does not seem
plausible, so this higher peak appears to be an artifact.
If we dismiss it from consideration, then we find that
our best-fit—value model has L = 3, » = 0.9, 6, = 1,
and m;, = 0.05. The support interval for L is 2-14. There
is a second peak, at L = 6, that is only slightly below the
L = 3 peak. Figure 6 shows contour plots for L and 6§,
(fig. 6a) and L and =, (fig. 6b). The fits of L are quite
robust to variation in §, and ;. The 1-LOD support space
encompasses a wide range of values of both parameters,
with the range of values of L becoming broader as
goes to 0 and §, goes to 1.

As we have shown, the possible relative-risk values
depend strongly on L. Including the actual values of the
risk (as opposed to just the relative values between dif-
ferent degrees of relatedness) substantially increases the
sensitivity of the likelihood function to L and is the
major cause of the increase in precision. The number of
families with more than two affected individuals is quite
small for the CLCP sample sizes. The exclusion of such
data from the analysis had only a minor effect on the
likelihood function. The addition of first cousins also
had very little effect on the likelihood profile, other than

shifting the maximum-likelihood—estimate value from
the L = 3 to the L = 6 value.

Tables 2 and 3 show the numbers of affected first-
degree relatives predicted by the best-fit model from the
multiplex method, along with the observed values. The
predicted values fit the data well. However, there does
appear to be a slightly higher incidence of families with
more than one relative of the proband affected. Similar
tables for second-degree relatives are available at Paul
Schliekelman’s Web site.

Application to Finnish Schizophrenia Data

To further demonstrate the utility of our method, we
will also apply it to schizophrenia data. Hovatta et al.
(1997) identified all cases in Finland with a diagnosis of
schizophrenia and published the number of affected sibs
in families (nearly 20,000) with up to 15 sibs (the data
set used in our analysis is available at Paul Schliekelman’s
Web site). We applied the multiplex method to these data.
The best-fit value was L = 3 with a support interval of
[2,3],and b = 1,6, = 1, and m, = 0.04.

Hovatta et al. (1999) conducted a genomewide scan
for schizophrenia genes in a genetic isolate of Finland and
found evidence for linkage at four loci. Thus, our results
for the entire Finnish population are roughly compatible
with this finding.

For this data set, we get a very tight support interval
for L. Because there are substantial numbers of families
with more than one relative affected, the use of multiplex
data in our fitting procedure makes a substantial differ-
ence in precision. Results were essentially the same when
families with more than four sibs were excluded from
the data. However, the exclusion of smaller family sizes
resulted in different best-fit values and a major loss of
precision (i.e., support intervals of 2—o for L).

We also see much tighter bounds on 4, §,, and ;. The
support region for b extended from 0 to 0.15. The sup-
port region for §; was limited to values near 1, whereas
that for m, was limited to values in the middle of the
range (corresponding to m; in the range 0.05-0.2).

Because there are no parent-offspring data in this data
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Figure 5

Likelihood profiles for CLCP data. a, Likelihood profile for L. b, Contour plot of the likelihood versus L and . The likelihood

value shown is the maximum across the parameters not shown. The values shown on the contour lines are the likelihood of parameter
combinations on that contour relative to the maximum-likelihood value. The likelihood for the multiplex-relative-risk method was generated
using equation (9) and data from Carter et al. (1982) on offspring and sibs of probands. The log(0.1) curve shows the cutoff for the support
interval (which includes all L values that are at least one-tenth as likely).

set, there is nothing that constrains sib and parent-off-
spring risks such that they are similar. The best-fit model
does predict substantially different risks for parent-off-
spring pairs and sibs of probands, which is not consistent
with other data on schizophrenia. We added 5,000 sim-
ulated parent-offspring pairs to the data, to test the im-
portance of not having parent-offspring data. These pairs
were assigned the same relative risk as observed for sib
pairs in the data set. This is consistent with other data
on schizophrenia (Risch 1990a). The best-fit model (see
table 5) had significant changes only in the dominance
coefficient », which became 1. Thus, the model fits were
robust to this lack of data. However, it is clear that some
parent-offspring data are needed to get correct estimates
of h.

The best-fit model for CLCP had L = 3 and 7, = 0.05.
Thus, a person with no disease alleles would have
0.05% = 0.000125 probability of being affected; this com-
pares to 0.001 for a randomly chosen individual. For the
best-fit schizophrenia model, the disease probability for
an individual with no disease alleles is 0.15* = 0.0005;
this compares to 0.01 for a randomly chosen individual.
In contrast, both best-fit models had §, = 1. This indi-
cates no environmental variation in the contribution from
a locus homozygous for the disease allele. In this case, an

individual homozygous for the disease allele on all loci is
always disease affected. Both disease models were quite
robust to variation from §, = 1.

Discussion

As shown by Risch (1990b), the power of mapping studies
for complex traits is dependent on the number of causative
loci. Altmiiller et al. (2001) compared characteristics of
various mapping studies in an attempt to determine which
factors lead to occurrence of significant linkage; they
found that sib relative risk was uncorrelated with detec-
tion of significant linkage, and they concluded that, con-
trary to the results of Risch (1990b), sib relative risk is
not a strong indicator of power in these studies. However,
Altmiiller et al. (2001) neglected an important point: the
power to detect significant linkage in a study of affected
pairs of relatives depends not on the overall relative risk
but on the relative risk attributable to each locus and on
how the loci interact (Risch 199056). Thus, we do not
expect to see a strong correlation between the observed
relative risk and the power.

Because of the importance of contributions from each
locus, methods for estimating the number of causative
loci will be important for the design of mapping studies
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(Risch 1990b, 1990c¢). We have shown here that caution
must be used in the application of the methods of Risch
(19904) and Farrall and Holder (1992). Our analysis has
shown that the application of these methods can give
results that are inconsistent with the observed disease
prevalence. The maximum possible parent-offspring rel-
ative risk decreases rapidly as the number of loci un-
derlying the disease increases, and the RFH method does
not constrain it to feasible values. The multiplex method
introduced here is a generalization of the RFH method
and is guaranteed to give consistent results.

We have also shown that the precision of inference of
L on the basis of the RFH method is of major concern.
Often, this method can say nothing more than that the
number of causative loci is >1. The multiplex method
has improved precision. For the CLCP example, which
had sample sizes on the order of a few hundred families,
our method yielded a support interval of [2,14], com-
pared with [2,0] for the RFH method. Although this is
not as good as we might like, [2,14] is a much more
useful bound than [2,]. Our method yielded a very pre-
cise (i.e., [2,3]) estimate with the much larger sample size
(~20,000 families) of the schizophrenia data. For higher
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Table 5

Best-Fit Values for Schizophrenia Data

L h 5, T p
4 [2-4] 0 1 158 43
3 [2-4]° 1 1 142 .04

NOTE.—Maximum-likelihood values of model
parameters for Finnish schizophrenia data.

* Parameter fits with data from Hovatta et al.
(1997).

" Five thousand offspring parent-offspring pairs
with relative risk equal to that for a single sib were
added to the data. This was to force a realistic
value of h.

(greater than ~10) best-fit values of L, the precision of
the method decreases. The support intervals in such
cases generally extend to infinity on the upper end and
a maximum of 10-15 on the lower end (P.S., unpub-
lished data). This tendency is due to the phenomenon
illustrated in figure 2: under a multiplicative model, the
variation at individual loci becomes small as L becomes
larger. Thus, there is little change in patterns of inher-
itance with greater numbers of loci. Although preci-
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Likelihood contours for CLCP data. a, Likelihood of the CLCP data versus L and §, . b, Likelihood versus L and =, . For each

L, 6, ranged from slightly above K" (the lowest possible value) to 1, in increments of (1 — K"*)/10. The Y-axis units gives these increments.
Thus, the value of the Y-axis units in panel a changes with the X-axis variable L. The same holds for panel b: 7, ranged from 0 to K" in

increments of K¥*/10, and the Y-axis units have the same value.
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sion does decrease as the best-fit L increases, the mul-
tiplex method still has better performance than the
RFH method: knowing that L is >10 is much more
useful than knowing only that it is >2.

As pointed out by an anonymous reviewer, some dis-
ease loci are known for some complex diseases. Thus,
what is unknown is how many disease loci remain, as
opposed to the total number. If the relative-risk value
attributable to a known locus can be determined, then
it can be divided out of the overall relative risk under
a multiplicative model. The method described here can
then be applied to the remaining loci.

Ascertainment Bias and Environmental Correlation

Fits of L in the applications in the present article were
robust to variations in which data were included in the
analysis. This indicates that it is possible to perform the
analysis on subsets of available data and thus exclude
suspect data. In cases in which it is not possible to ex-
clude all biased data, it may be possible to include only
data biased in the same direction. For example, data that
are biased toward higher relative risks will tend to pro-
duce lower estimates of L. In this case, one could still get
a lower bound on L and an upper bound on power in
mapping studies. The RFH method requires data from
individuals of at least two different degrees of relatedness.

Penetrance Models and Power of Mapping Studies

For CLCP and schizophrenia, the best-fit models had
three and four loci, respectively. On the basis of the
power relationships in Risch’s (19906, 1990c¢) studies,
affected-sib-pair studies for both these diseases should
then have 80% power for sample sizes of ~200 (assum-
ing Ny = 30 for CLCP and A; = 10 for schizophrenia
and marker density such that the recombination fraction
is ~0 between marker and disease allele). For CLCP, the
support interval for L extended up to 14. In this case,
sample sizes of =1,000 would be required in order to
achieve reasonable power. It is unknown, however, how
reasonable the assumption of equal contribution from
all loci is. Under that assumption, the estimated value
of L leads to a lower bound on the contribution from
each locus. This then indicates what sample sizes and
marker densities will be necessary to map causative loci
(Risch 19906, 1990¢). From the point of view of map-
ping, assumption of equal effects is conservative. Vari-
ation among loci will ensure that at least one causative
locus will have an effect greater than the lower bound.
Recently, Pritchard (2001) modeled the evolution of
complex-disease loci. He showed that, because of in-
trinsic variability in allele frequencies created by genetic
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drift, mutation, and, possibly, weak purifying selection,
contributions of different loci would be expected to vary
substantially because of variation across loci in the fre-
quencies of causative alleles. On this basis, he argued
that a higher number of loci is likely for complex dis-
eases, since the evidence from affected-sib-pair studies
is against any single locus’s having a major effect. Al-
though Pritchard’s (2001) analysis was based on specific
population genetic assumptions, his conclusion that sub-
stantial variation of effects across loci is to be expected
is almost certain to be correct for a much wider class of
models than he considered.

It would be possible to incorporate variation across loci
into our multiplex method. A statistical distribution (e.g.,
a gamma distribution) of effects could be assumed, or a
population genetic model of the kind used by Pritchard
(2001) could be analyzed. In either case, the resulting
model might be so rich in parameters as to be impractical.

As with all model fitting, the information that we get
is only as good as the model. It is completely unknown
whether a multiplicative model is in any way represen-
tative of reality. It is the case that a multiplicative model
can match the available risk data for CLCP and schizo-
phrenia quite well. Using the methods outlined in the
present article, we can gain much information about
the implications if a multiplicative model is the correct
description for a disease. However, there is no way of
knowing whether a different model is more appropriate.
Future work should extend the present methodology
to more-general penetrance models. The primary ob-
stacle to overcome is the large number of genotype
probabilities that must be calculated when the as-
sumption of multiplicative interactions does not apply.
The popularity of multiplicative penetrance models is
based on nothing more than mathematical conven-
ience. Thus, it is important to move beyond such mod-
els. Although it is impossible to ever prove that a model
is correct by using only family-history data, we can
exclude models. One major success of the RFH method
is showing that a model with additive action between
loci is not plausible for either schizophrenia (Risch
1990a) or CLCP (Farrall and Holder 1992). Future
work should test other penetrance models and decide
on their plausibility and, if they are plausible, the im-
plications thereof.

Acknowledgments

This research was supported in part by grant GM40282 (to
M.S.) from the National Institutes of Health. We thank C.
Garner for helpful discussions.



Schliekelman and Slatkin: Multiplex Relative Risk and Locus Number 1381

Appendix A

Derivation of Probabilities of Affected Status

Our goal is to derive equations that give the probability that M of N relatives of an affected individual are
affected. We will demonstrate the derivation for two sibs of the affected individual. The derivation is similar for
other types and numbers of relatives.

Take X, X, and X, as indicator variables representing the affected status of the proband and sibs 1 and 2,
respectively. These indicator variables have a value of 0 when the individual is unaffected and a value of 1 when
the individual is affected. Then, P (X, = 1,X5, = 1|X = 1) is the probability that the sibs 1 and 2 are affected,
given that the proband is affected.

We can expand this probability to include the parental genotypes:

P(Xy = 1,X, = 1X = 1)=beEP<xs1 = 1,X,, = 1|B, = b,,B, = b,)P(B, = b,,B, = b,|X = 1), (Al)

where B, and B, represent the genotypes of the parents of the three sibs.
Using the Bayes theorem, we can rewrite the conditional probability of the parental genotypes as

P(X = 1|B, = b,,B, = b))P(B, = b,,B, = b))

PB, = bl’BZ = b2|X =1)= PX = 1)

The genotype distributions of sibs are independent, given the parental genotype. Thus, the probabilities that sibs 1 and
2 are affected are independent, given the parental genotype. Hence, we have P(Xy, = 1,X;, = 1|B, = b,,B, = b,) =
P(Xs, = 1|B, = b,,B, = b,)P(Xs, = 1|B, = b,,B, = b,). Finally, the genotype distribution of the parents is also
assumed to be independent. Then, equation (A1) becomes

P(Xs = 1,X5, = 1|X =1

= 22 P(X5 = 1|Bl = anz = bz)P(st = 1|B1 = anz = bz)

b1 b

x . (A2)

The probability of being affected given the parental genotype is the same for all children. Thus, we can write
equation (A2) as

PXs = 1,X;, = 1[X = 1)= >, >,

by ba PX =1) (A3)

Equation (A3) can easily be extended to any number of sibs:

P(X = 1|B, = b;,B, = by)"' P(B, = b)P (B, = b))
P(n sibs affected|X = 1)= >, >,
o PX =1

Next, we need the probability that an individual is affected given his or her parent’s genotypes. We ex-
pand this probability in terms of the individual’s genotype A, as follows: P(X = 1|B, = b,,B, = b,) =
S.P(X=1A=a)P(A = alB, = b,,B, = b,).
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Multiplicative Penetrance

To proceed, we need to further specify the penetrance model. Following Risch (1990a), we assume a multiplicative
model for penetrance: u (G) = u, (i,)u, (i,) ... u; (i;), where u(G) is the disease penetrance for multilocus genotype
G and u,(i;) is the contribution to the penetrance from the one-locus genotype i, on locus j. Thus, G is a vector
[i1525 0 ip]-

If there is no linkage disequilibrium, then the probability that 7 sibs of a proband are affected can be expressed as

P(X = 1|B, = b,,B, = b,)""'P(B, = b))P(B, = b))
P(n of n sibs affected|X = 1) = EE

by by P(X = 1)
S Dk e D 2ok [ Sy eee D Uy (81) ety (G) P (61]715R 1) . Pl | k) P (i) P (ky)... P(j,)P(k;) M
= X ) (A4)
where j,, and k,, index the parental genotypes. Equation (A4) can be rearranged as
[Tha=1 (B Dk [Zis iy (6) P Gy | s Rl P (G, P (R )
P(n of n sibs affected|X = 1) = . (AS)

K

Equation (AS5) shows that the single-locus genotype frequencies can be calculated independently and then can be
multiplied to get the overall probabilities.

Probabilities That Fewer Than All Sibs Are Affected

The probability that sib 1 is affected and sib 2 is unaffected is P(X5;, = 1,X;, = 0|X =1) = P(X;,, = 0| X = 1) —
P(X, = 0,X;, = 0|X = 1). Thus,

P(1 of 2 sibs affected|X = 1)=2[P(X,, = 0|X = 1)-P(X;; = 0,X;, = 0|X = 1)] . (A6)
This can be generalized as

P(n —1 of n sibs affected|X = 1)
=n[P(n—1 of n—1 sibs affected|X = 1)— P(n of n sibs affected|X = 1) , (A7)

P(n — 2 of n sibs affected|X = 1) =( n

n—2) [P(n— 2 of n— 2 sibs affected|X = 1)

—P(n of n sibs affected|X = 1)—%P(n — 1 of n sibs affected|X = 1)] , (A8)

and so forth. Equations (A6)—(A8) are not specific to sibs and apply to any type (or combination of types) of
relatives.
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Appendix B

Derivation of Constraints on L

Our goal is to find, given L, the maximum parent-offspring relative risk that can be produced by an allowable
combination of penetrance values and allele frequencies. This risk is given by the equation

1 1 1 1 1
MoK? = [ (1= p1* + 20, + )5+ 300) 001 — o7 + 40, (5 + 390+ 38,9201 = pF
2 2 1 1 3 2 4411
o, + o p (1 —p) + 20 + 51‘)(5‘//1‘ + Eal‘)P (1 —=p)+orp*]™ .

This is subject to the constraint that the parameters and allele frequencies must produce the correct disease
prevalence K:

K={1-pPm +2p(1 —p)m, + b6, — m)+p26])" .

We have not found any general analytic proof on maximums for X ,,. However, we can argue, on intuitive grounds,
that it should be maximized at m;, = 0 and 8, = 1: the relative risk should be highest when disease risk is determined
completely by genotype and has no environmental component. Numerical evidence supports this. If we assume
that this is the case, then we can show that A, will always be maximized at either » = 0 or b = 1 (the proof of
this is straightforward, but algebraically intense and will not be shown here). We can easily find the maximums
for N, in these cases.

If the disease alleles are completely recessive (b = 0), then an affected parent must be homozygous for the disease
allele on all disease loci. Thus, it is certain that a child will receive a disease allele on each locus from that parent.
We have not specified anything about the other parent. Therefore, the probability that this child receives a disease
allele on a particular locus from that parent is simply the disease-allele frequency p. The probability that he or she
receives the disease allele on all L loci is p”. The disease prevalence is given by K = p*". Then,

L p_L _ (KUZL)L _ i
K K VK

(B1)

This gives N,, = 10 for K = 0.01 and \,, = 31.6 for K = 0.001. We can argue similarly to find the relative risk
for sibs. Each parent of an affected person must be carrying at least one disease allele on each locus. At a particular
locus, another child of those parents has a one-fourth chance of inheriting both of those alleles, a one-half chance
of inheriting one of them, and a one-fourth chance of inheriting neither of them. In all cases, an allele that is not
IBD with one that was inherited by the affected sib has the same frequency distribution as an allele selected from
the general population. Thus, we have

As

(5 +3p + ap?) 1K = (4 + 3K+ GKM K
For completely dominant disease alleles (b = 1), the parent-offspring risk is given by

P (parent affected, child affected) o -
Ko = P (parent affected) = Re=pla+ap)+p K (B2)

If the parent is a heterozygote—probability 2p(1 — p)—then the child has a one-half chance of getting the disease
allele on a given locus from that parent and has a (1/2)p chance of getting the normal allele from that parent
and a disease allele from the other parent. If the parent is homozygous for the disease allele—probability p>*—
then the child always has a “disease event” for that locus. For completely dominant disease alleles, we have
K = [2p (1 — p) + p*]*. This can easily be solved for p and can be substituted into equation (B2). After doing
this and comparing with equation (B1), we find that \, is higher for » = 0 than for h = 1, when L = 7 for
K = 0.01 and when L = 10 for K = 0.001. For large values of L, the sib and parent-offspring relative risks are
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nearly equal, even for completely recessive disease alleles. This is because the disease-allele frequency p increases
as the power of 1/L and thus gets large very quickly with L (see fig. 2). When p is large, the probability of being
homozygous for the disease allele at a given locus is large for everyone in the population, and sharing disease
alleles IBD with a sib does not make much difference. For large values of L (such that the difference between
N, and Ay is negligible), the maximum allowable X, value will be given by equation (B1). For small-to-inter-
mediate values of L, the dominance variance will be nonnegligible for » = 0 and » = 1. If the data indicate
little or no dominance variance, then we must resort to a numerical approach to find the maximum allowable
\,, value (see the main text).

We can also analytically solve the case with » = 1/2 and general m;, and §,. We start with equation (A5) and
n = 1 (note that N\, = A for b = 1/2):

po

1 1 2
NKZ = (ﬂf(l —-prt+4 {EWL +E[7rL +h(6, — WL)]} p(1—py

2
+4 {%WL + %[7& +h(6, — WL)]"‘%‘SL} p*(1 —pP+2[m + b6, — )P p*(1 — pP
L
1 1 2

+4{§[7TL+h(6L_7rL)]+£6L} p 1 —p+o.p*| . (B3)

The disease prevalence is given by
K=[1- p)l m +2p(1 — p)(m, + b6, — 7TL)+p26L)]L . (B4)
If we take b = 1/2 and simultaneously solve equations (B3) and (B4) for m, and §,, then we get
K"p + 2K\, — 1p(1 — p)

- BS
m P (BS)

and

Kl/Lp _ 2K1/L\”()\L _ 1)p (1 _ p) _ Kl/L

b, = p—

(B6)

There are other solutions to equations (BS) and (B6) with the signs of the second terms reversed, but it can be
shown that these solutions give values that are not bound between 0 and 1, as required for a probability. If we
apply the restrictions 0 < p <1 and 0 < 7, < K" < §, < 1, then we can get the condition

1+3K"
11/L = W . (B7)

Craddock et al. (1995) obtained the condition (eq. [B7]) with L = 1, but they focused on the lower limits of A\
and did not explicitly extend this result for the upper limit to L > 1. This is a rather stringent condition. Figure 1
shows a plot of allowable values of A, as a function of L for K = 0.01 and K = 0.001. Points below the curves
are allowable combinations of L and \,. We see that, when disease prevalence is 0.01 (with no dominance), it is
impossible to get a first-degree relative risk greater than ~10 for L > 1 under the assumptions of our model.
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